Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis (2107.03298v1)

Published 7 Jul 2021 in cs.SD, cs.MM, and eess.AS

Abstract: This paper describes a variational auto-encoder based non-autoregressive text-to-speech (VAENAR-TTS) model. The autoregressive TTS (AR-TTS) models based on the sequence-to-sequence architecture can generate high-quality speech, but their sequential decoding process can be time-consuming. Recently, non-autoregressive TTS (NAR-TTS) models have been shown to be more efficient with the parallel decoding process. However, these NAR-TTS models rely on phoneme-level durations to generate a hard alignment between the text and the spectrogram. Obtaining duration labels, either through forced alignment or knowledge distillation, is cumbersome. Furthermore, hard alignment based on phoneme expansion can degrade the naturalness of the synthesized speech. In contrast, the proposed model of VAENAR-TTS is an end-to-end approach that does not require phoneme-level durations. The VAENAR-TTS model does not contain recurrent structures and is completely non-autoregressive in both the training and inference phases. Based on the VAE architecture, the alignment information is encoded in the latent variable, and attention-based soft alignment between the text and the latent variable is used in the decoder to reconstruct the spectrogram. Experiments show that VAENAR-TTS achieves state-of-the-art synthesis quality, while the synthesis speed is comparable with other NAR-TTS models.

Citations (11)

Summary

We haven't generated a summary for this paper yet.