Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Closed-loop convergence for mean field games with common noise (2107.03273v2)

Published 7 Jul 2021 in math.PR and math.OC

Abstract: This paper studies the convergence problem for mean field games with common noise. We define a suitable notion of weak mean field equilibria, which we prove captures all subsequential limit points, as $n\to\infty$, of closed-loop approximate equilibria from the corresponding $n$-player games. This extends to the common noise setting a recent result of the first author, while also simplifying a key step in the proof and allowing unbounded coefficients and non-i.i.d. initial conditions. Conversely, we show that every weak mean field equilibrium arises as the limit of some sequence of approximate equilibria for the $n$-player games, as long as the latter are formulated over a broader class of closed-loop strategies which may depend on an additional common signal.

Summary

We haven't generated a summary for this paper yet.