Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On complemented copies of the space $c_0$ in spaces $C_p(X,E)$ (2107.03211v3)

Published 7 Jul 2021 in math.FA and math.GN

Abstract: We study the question for which Tychonoff spaces $X$ and locally convex spaces $E$ the space $C_p(X,E)$ of continuous $E$-valued functions on $X$ contains a complemented copy of the space $(c_0)_p={x\in\mathbb{R}\omega\colon x(n)\to0}$, both endowed with the pointwise topology. We provide a positive answer for a vast class of spaces, extending classical theorems of Cembranos, Freniche, and Doma\'nski and Drewnowski, proved for the case of Banach and Fr\'echet spaces $C_k(X,E)$. Also, for given infinite Tychonoff spaces $X$ and $Y$, we show that $C_p(X,C_p(Y))$ contains a complemented copy of $(c_0)_p$ if and only if any of the spaces $C_p(X)$ and $C_p(Y)$ contains such a subspace.

Summary

We haven't generated a summary for this paper yet.