2000 character limit reached
Quantitative Hilbert irreducibility and almost prime values of polynomial discriminants (2107.02914v3)
Published 6 Jul 2021 in math.NT
Abstract: We study two polynomial counting questions in arithmetic statistics via a combination of Fourier analytic and arithmetic methods. First, we obtain new quantitative forms of Hilbert's Irreducibility Theorem for degree $n$ polynomials $f$ with $\mathrm{Gal}(f) \subseteq A_n$. We study this both for monic polynomials and non-monic polynomials. Second, we study lower bounds on the number of degree $n$ monic polynomials with almost prime discriminants, as well as the closely related problem of lower bounds on the number of degree $n$ number fields with almost prime discriminants.