Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SAGE: Intrusion Alert-driven Attack Graph Extractor (2107.02783v2)

Published 6 Jul 2021 in cs.CR and cs.LG

Abstract: Attack graphs (AG) are used to assess pathways availed by cyber adversaries to penetrate a network. State-of-the-art approaches for AG generation focus mostly on deriving dependencies between system vulnerabilities based on network scans and expert knowledge. In real-world operations however, it is costly and ineffective to rely on constant vulnerability scanning and expert-crafted AGs. We propose to automatically learn AGs based on actions observed through intrusion alerts, without prior expert knowledge. Specifically, we develop an unsupervised sequence learning system, SAGE, that leverages the temporal and probabilistic dependence between alerts in a suffix-based probabilistic deterministic finite automaton (S-PDFA) -- a model that accentuates infrequent severe alerts and summarizes paths leading to them. AGs are then derived from the S-PDFA on a per-objective, per-victim basis. Tested with intrusion alerts collected through Collegiate Penetration Testing Competition, SAGE compresses over 330k alerts into 93 AGs. These AGs reflect the strategies used by the participating teams. The AGs are succinct, interpretable, and capture behavioral dynamics, e.g., that attackers will often follow shorter paths to re-exploit objectives.

Citations (9)

Summary

We haven't generated a summary for this paper yet.