Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supporting AI Engineering on the IoT Edge through Model-Driven TinyML (2107.02690v2)

Published 6 Jul 2021 in cs.SE, cs.AI, and cs.LG

Abstract: Software engineering of network-centric AI and Internet of Things (IoT) enabled Cyber-Physical Systems (CPS) and services, involves complex design and validation challenges. In this paper, we propose a novel approach, based on the model-driven software engineering paradigm, in particular the domain-specific modeling methodology. We focus on a sub-discipline of AI, namely Machine Learning (ML) and propose the delegation of data analytics and ML to the IoT edge. This way, we may increase the service quality of ML, for example, its availability and performance, regardless of the network conditions, as well as maintaining the privacy, security and sustainability. We let practitioners assign ML tasks to heterogeneous edge devices, including highly resource-constrained embedded microcontrollers with main memories in the order of Kilobytes, and energy consumption in the order of milliwatts. This is known as TinyML. Furthermore, we show how software models with different levels of abstraction, namely platform-independent and platform-specific models can be used in the software development process. Finally, we validate the proposed approach using a case study addressing the predictive maintenance of a hydraulics system with various networked sensors and actuators.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Armin Moin (21 papers)
  2. Moharram Challenger (10 papers)
  3. Atta Badii (14 papers)
  4. Stephan Günnemann (169 papers)
Citations (7)