Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal approximation and model compression for radial neural networks (2107.02550v3)

Published 6 Jul 2021 in cs.LG and math.RT

Abstract: We introduce a class of fully-connected neural networks whose activation functions, rather than being pointwise, rescale feature vectors by a function depending only on their norm. We call such networks radial neural networks, extending previous work on rotation equivariant networks that considers rescaling activations in less generality. We prove universal approximation theorems for radial neural networks, including in the more difficult cases of bounded widths and unbounded domains. Our proof techniques are novel, distinct from those in the pointwise case. Additionally, radial neural networks exhibit a rich group of orthogonal change-of-basis symmetries on the vector space of trainable parameters. Factoring out these symmetries leads to a practical lossless model compression algorithm. Optimization of the compressed model by gradient descent is equivalent to projected gradient descent for the full model.

Citations (7)

Summary

We haven't generated a summary for this paper yet.