Papers
Topics
Authors
Recent
2000 character limit reached

Browder's Theorem through Brouwer's Fixed Point Theorem

Published 6 Jul 2021 in math.GN | (2107.02428v1)

Abstract: One of the conclusions of Browder (1960) is a parametric version of Brouwer's Fixed Point Theorem, stating that for every continuous function $f : ([0,1] \times X) \to X$, where $X$ is a simplex in a Euclidean space, the set of fixed points of $f$, namely, the set ${(t,x) \in [0,1] \times X \colon f(t,x) = x}$, has a connected component whose projection on the first coordinate is $[0,1]$. Browder's (1960) proof relies on the theory of the fixed point index. We provide an alternative proof to Browder's result using Brouwer's Fixed Point Theorem.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.