Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-optimal inference in adaptive linear regression (2107.02266v3)

Published 5 Jul 2021 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: When data is collected in an adaptive manner, even simple methods like ordinary least squares can exhibit non-normal asymptotic behavior. As an undesirable consequence, hypothesis tests and confidence intervals based on asymptotic normality can lead to erroneous results. We propose a family of online debiasing estimators to correct these distributional anomalies in least squares estimation. Our proposed methods take advantage of the covariance structure present in the dataset and provide sharper estimates in directions for which more information has accrued. We establish an asymptotic normality property for our proposed online debiasing estimators under mild conditions on the data collection process and provide asymptotically exact confidence intervals. We additionally prove a minimax lower bound for the adaptive linear regression problem, thereby providing a baseline by which to compare estimators. There are various conditions under which our proposed estimators achieve the minimax lower bound. We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.

Citations (16)

Summary

We haven't generated a summary for this paper yet.