Cost-efficient QFA Algorithm for Quantum Computers (2107.02262v2)
Abstract: The study of quantum finite automata (QFAs) is one of the possible approaches in exploring quantum computers with finite memory. Despite being one of the most restricted models, Moore-Crutchfield quantum finite automaton (MCQFA) is proven to be exponentially more succinct than classical finite automata models in recognizing certain languages such as $\mathtt{MOD}_p = { a{j} \mid j \equiv 0 \mod p}$, where $p$ is a prime number. In this paper, we present a modified MCQFA algorithm for the language $\mathtt{MOD}_p$, the operators of which are selected based on the basis gates on the available real quantum computers. As a consequence, we obtain shorter quantum programs using fewer basis gates compared to the implementation of the original algorithm given in the literature.