Papers
Topics
Authors
Recent
2000 character limit reached

Combining Orthology and Xenology Data in a Common Phylogenetic Tree

Published 5 Jul 2021 in math.CO, cs.DM, and q-bio.PE | (2107.01893v1)

Abstract: A rooted tree $T$ with vertex labels $t(v)$ and set-valued edge labels $\lambda(e)$ defines maps $\delta$ and $\varepsilon$ on the pairs of leaves of $T$ by setting $\delta(x,y)=q$ if the last common ancestor $\text{lca}(x,y)$ of $x$ and $y$ is labeled $q$, and $m\in \varepsilon(x,y)$ if $m\in\lambda(e)$ for at least one edge $e$ along the path from $\text{lca}(x,y)$ to $y$. We show that a pair of maps $(\delta,\varepsilon)$ derives from a tree $(T,t,\lambda)$ if and only if there exists a common refinement of the (unique) least-resolved vertex labeled tree $(T_{\delta},t_{\delta})$ that explains $\delta$ and the (unique) least resolved edge labeled tree $(T_{\varepsilon},\lambda_{\varepsilon})$ that explains $\varepsilon$ (provided both trees exist). This result remains true if certain combinations of labels at incident vertices and edges are forbidden.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.