Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Why is Pruning at Initialization Immune to Reinitializing and Shuffling? (2107.01808v1)

Published 5 Jul 2021 in cs.LG and cs.AI

Abstract: Recent studies assessing the efficacy of pruning neural networks methods uncovered a surprising finding: when conducting ablation studies on existing pruning-at-initialization methods, namely SNIP, GraSP, SynFlow, and magnitude pruning, performances of these methods remain unchanged and sometimes even improve when randomly shuffling the mask positions within each layer (Layerwise Shuffling) or sampling new initial weight values (Reinit), while keeping pruning masks the same. We attempt to understand the reason behind such network immunity towards weight/mask modifications, by studying layer-wise statistics before and after randomization operations. We found that under each of the pruning-at-initialization methods, the distribution of unpruned weights changed minimally with randomization operations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.