Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Rewriting Coherence Theorem with Applications in Homotopy Type Theory (2107.01594v2)

Published 4 Jul 2021 in cs.LO and math.LO

Abstract: Higher-dimensional rewriting systems are tools to analyse the structure of formally reducing terms to normal forms, as well as comparing the different reduction paths that lead to those normal forms. This higher structure can be captured by finding a homotopy basis for the rewriting system. We show that the basic notions of confluence and wellfoundedness are sufficient to recursively build such a homotopy basis, with a construction reminiscent of an argument by Craig C. Squier. We then go on to translate this construction to the setting of homotopy type theory, where managing equalities between paths is important in order to construct functions which are coherent with respect to higher dimensions. Eventually, we apply the result to approximate a series of open questions in homotopy type theory, such as the characterisation of the homotopy groups of the free group on a set and the pushout of 1-types. This paper expands on our previous conference contribution "Coherence via Wellfoundedness" (arXiv:2001.07655) by laying out the construction in the language of higher-dimensional rewriting.

Citations (4)

Summary

We haven't generated a summary for this paper yet.