Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Persian-WSD-Corpus: A Sense Annotated Corpus for Persian All-words Word Sense Disambiguation (2107.01540v1)

Published 4 Jul 2021 in cs.CL

Abstract: Word Sense Disambiguation (WSD) is a long-standing task in Natural Language Processing(NLP) that aims to automatically identify the most relevant meaning of the words in a given context. Developing standard WSD test collections can be mentioned as an important prerequisite for developing and evaluating different WSD systems in the language of interest. Although many WSD test collections have been developed for a variety of languages, no standard All-words WSD benchmark is available for Persian. In this paper, we address this shortage for the Persian language by introducing SBU-WSD-Corpus, as the first standard test set for the Persian All-words WSD task. SBU-WSD-Corpus is manually annotated with senses from the Persian WordNet (FarsNet) sense inventory. To this end, three annotators used SAMP (a tool for sense annotation based on FarsNet lexical graph) to perform the annotation task. SBU-WSD-Corpus consists of 19 Persian documents in different domains such as Sports, Science, Arts, etc. It includes 5892 content words of Persian running text and 3371 manually sense annotated words (2073 nouns, 566 verbs, 610 adjectives, and 122 adverbs). Providing baselines for future studies on the Persian All-words WSD task, we evaluate several WSD models on SBU-WSD-Corpus. The corpus is publicly available at https://github.com/hrouhizadeh/SBU-WSD-Corpus.

Citations (2)

Summary

We haven't generated a summary for this paper yet.