Stochastic Algorithms for Self-consistent Calculations of Electronic Structures (2107.01454v3)
Abstract: The convergence property of a stochastic algorithm for the self-consistent field (SCF) calculations of electron structures is studied. The algorithm is formulated by rewriting the electron charges as a trace/diagonal of a matrix function, which is subsequently expressed as a statistical average. The function is further approximated by using a Krylov subspace approximation. As a result, each SCF iteration only samples one random vector without having to compute all the orbitals. We consider the common practice of SCF iterations with damping and mixing. We prove with appropriate assumptions that the iterations converge in the mean-square sense, when the stochastic error has an almost sure bound. We also consider the scenario when such an assumption is weakened to a second moment condition, and prove the convergence in probability.