Papers
Topics
Authors
Recent
2000 character limit reached

Spatiotemporal information conversion machine for time-series prediction

Published 3 Jul 2021 in cs.LG, cs.AI, and math.DS | (2107.01353v2)

Abstract: Making predictions in a robust way is a difficult task only based on the observed data of a nonlinear system. In this work, a neural network computing framework, the spatiotemporal information conversion machine (STICM), was developed to efficiently and accurately render a multistep-ahead prediction of a time series by employing a spatial-temporal information (STI) transformation. STICM combines the advantages of both the STI equation and the temporal convolutional network, which maps the high-dimensional/spatial data to the future temporal values of a target variable, thus naturally providing the prediction of the target variable. From the observed variables, the STICM also infers the causal factors of the target variable in the sense of Granger causality, which are in turn selected as effective spatial information to improve the prediction robustness of time-series. The STICM was successfully applied to both benchmark systems and real-world datasets, all of which show superior and robust performance in multistep-ahead prediction, even when the data were perturbed by noise. From both theoretical and computational viewpoints, the STICM has great potential in practical applications in AI or as a model-free method based only on the observed data, and also opens a new way to explore the observed high-dimensional data in a dynamical manner for machine learning.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.