Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatiotemporal information conversion machine for time-series prediction (2107.01353v2)

Published 3 Jul 2021 in cs.LG, cs.AI, and math.DS

Abstract: Making predictions in a robust way is a difficult task only based on the observed data of a nonlinear system. In this work, a neural network computing framework, the spatiotemporal information conversion machine (STICM), was developed to efficiently and accurately render a multistep-ahead prediction of a time series by employing a spatial-temporal information (STI) transformation. STICM combines the advantages of both the STI equation and the temporal convolutional network, which maps the high-dimensional/spatial data to the future temporal values of a target variable, thus naturally providing the prediction of the target variable. From the observed variables, the STICM also infers the causal factors of the target variable in the sense of Granger causality, which are in turn selected as effective spatial information to improve the prediction robustness of time-series. The STICM was successfully applied to both benchmark systems and real-world datasets, all of which show superior and robust performance in multistep-ahead prediction, even when the data were perturbed by noise. From both theoretical and computational viewpoints, the STICM has great potential in practical applications in AI or as a model-free method based only on the observed data, and also opens a new way to explore the observed high-dimensional data in a dynamical manner for machine learning.

Citations (4)

Summary

We haven't generated a summary for this paper yet.