Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual Causal/Non-Causal Self-Attention for Streaming End-to-End Speech Recognition (2107.01269v1)

Published 2 Jul 2021 in eess.AS, cs.LG, and cs.SD

Abstract: Attention-based end-to-end automatic speech recognition (ASR) systems have recently demonstrated state-of-the-art results for numerous tasks. However, the application of self-attention and attention-based encoder-decoder models remains challenging for streaming ASR, where each word must be recognized shortly after it was spoken. In this work, we present the dual causal/non-causal self-attention (DCN) architecture, which in contrast to restricted self-attention prevents the overall context to grow beyond the look-ahead of a single layer when used in a deep architecture. DCN is compared to chunk-based and restricted self-attention using streaming transformer and conformer architectures, showing improved ASR performance over restricted self-attention and competitive ASR results compared to chunk-based self-attention, while providing the advantage of frame-synchronous processing. Combined with triggered attention, the proposed streaming end-to-end ASR systems obtained state-of-the-art results on the LibriSpeech, HKUST, and Switchboard ASR tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Niko Moritz (23 papers)
  2. Takaaki Hori (41 papers)
  3. Jonathan Le Roux (82 papers)
Citations (19)