Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inter-intra Variant Dual Representations forSelf-supervised Video Recognition (2107.01194v3)

Published 2 Jul 2021 in cs.CV and cs.AI

Abstract: Contrastive learning applied to self-supervised representation learning has seen a resurgence in deep models. In this paper, we find that existing contrastive learning based solutions for self-supervised video recognition focus on inter-variance encoding but ignore the intra-variance existing in clips within the same video. We thus propose to learn dual representations for each clip which (\romannumeral 1) encode intra-variance through a shuffle-rank pretext task; (\romannumeral 2) encode inter-variance through a temporal coherent contrastive loss. Experiment results show that our method plays an essential role in balancing inter and intra variances and brings consistent performance gains on multiple backbones and contrastive learning frameworks. Integrated with SimCLR and pretrained on Kinetics-400, our method achieves $\textbf{82.0\%}$ and $\textbf{51.2\%}$ downstream classification accuracy on UCF101 and HMDB51 test sets respectively and $\textbf{46.1\%}$ video retrieval accuracy on UCF101, outperforming both pretext-task based and contrastive learning based counterparts. Our code is available at \href{https://github.com/lzhangbj/DualVar}{https://github.com/lzhangbj/DualVar}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Lin Zhang (342 papers)
  2. Qi She (37 papers)
  3. Zhengyang Shen (15 papers)
  4. Changhu Wang (54 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.