Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ultrasound Video Transformers for Cardiac Ejection Fraction Estimation (2107.00977v1)

Published 2 Jul 2021 in cs.CV

Abstract: Cardiac ultrasound imaging is used to diagnose various heart diseases. Common analysis pipelines involve manual processing of the video frames by expert clinicians. This suffers from intra- and inter-observer variability. We propose a novel approach to ultrasound video analysis using a transformer architecture based on a Residual Auto-Encoder Network and a BERT model adapted for token classification. This enables videos of any length to be processed. We apply our model to the task of End-Systolic (ES) and End-Diastolic (ED) frame detection and the automated computation of the left ventricular ejection fraction. We achieve an average frame distance of 3.36 frames for the ES and 7.17 frames for the ED on videos of arbitrary length. Our end-to-end learnable approach can estimate the ejection fraction with a MAE of 5.95 and $R2$ of 0.52 in 0.15s per video, showing that segmentation is not the only way to predict ejection fraction. Code and models are available at https://github.com/HReynaud/UVT.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Hadrien Reynaud (23 papers)
  2. Athanasios Vlontzos (27 papers)
  3. Benjamin Hou (31 papers)
  4. Arian Beqiri (11 papers)
  5. Paul Leeson (5 papers)
  6. Bernhard Kainz (122 papers)
Citations (43)

Summary

We haven't generated a summary for this paper yet.