Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Video Conferencing and Flow-Rate Fairness: A First Look at Zoom and the Impact of Flow-Queuing AQM (2107.00904v1)

Published 2 Jul 2021 in cs.NI

Abstract: Congestion control is essential for the stability of the Internet and the corresponding algorithms are commonly evaluated for interoperability based on flow-rate fairness. In contrast, video conferencing software such as Zoom uses custom congestion control algorithms whose fairness behavior is mostly unknown. Aggravatingly, video conferencing has recently seen a drastic increase in use - partly caused by the COVID-19 pandemic - and could hence negatively affect how available Internet resources are shared. In this paper, we thus investigate the flow-rate fairness of video conferencing congestion control at the example of Zoom and influences of deploying AQM. We find that Zoom is slow to react to bandwidth changes and uses two to three times the bandwidth of TCP in low-bandwidth scenarios. Moreover, also when competing with delay aware congestion control such as BBR, we see high queuing delays. AQM reduces these queuing delays and can equalize the bandwidth use when used with flow-queuing. However, it then introduces high packet loss for Zoom, leaving the question how delay and loss affect Zoom's QoE. We hence show a preliminary user study in the appendix which indicates that the QoE is at least not improved and should be studied further.

Citations (11)

Summary

We haven't generated a summary for this paper yet.