Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segmented Federated Learning for Adaptive Intrusion Detection System (2107.00881v1)

Published 2 Jul 2021 in cs.CR, cs.DC, and cs.LG

Abstract: Cyberattacks are a major issues and it causes organizations great financial, and reputation harm. However, due to various factors, the current network intrusion detection systems (NIDS) seem to be insufficent. Predominant NIDS identifies Cyberattacks through a handcrafted dataset of rules. Although the recent applications of machine learning and deep learning have alleviated the enormous effort in NIDS, the security of network data has always been a prime concern. However, to encounter the security problem and enable sharing among organizations, Federated Learning (FL) scheme is employed. Although the current FL systems have been successful, a network's data distribution does not always fit into a single global model as in FL. Thus, in such cases, having a single global model in FL is no feasible. In this paper, we propose a Segmented-Federated Learning (Segmented-FL) learning scheme for a more efficient NIDS. The Segmented-FL approach employs periodic local model evaluation based on which the segmentation occurs. We aim to bring similar network environments to the same group. Further, the Segmented-FL system is coupled with a weighted aggregation of local model parameters based on the number of data samples a worker possesses to further augment the performance. The improved performance by our system as compared to the FL and centralized systems on standard dataset further validates our system and makes a strong case for extending our technique across various tasks. The solution finds its application in organizations that want to collaboratively learn on diverse network environments and protect the privacy of individual datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.