Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Orienting (hyper)graphs under explorable stochastic uncertainty (2107.00572v1)

Published 1 Jul 2021 in cs.DS

Abstract: Given a hypergraph with uncertain node weights following known probability distributions, we study the problem of querying as few nodes as possible until the identity of a node with minimum weight can be determined for each hyperedge. Querying a node has a cost and reveals the precise weight of the node, drawn from the given probability distribution. Using competitive analysis, we compare the expected query cost of an algorithm with the expected cost of an optimal query set for the given instance. For the general case, we give a polynomial-time $f(\alpha)$-competitive algorithm, where $f(\alpha)\in [1.618+\epsilon,2]$ depends on the approximation ratio $\alpha$ for an underlying vertex cover problem. We also show that no algorithm using a similar approach can be better than $1.5$-competitive. Furthermore, we give polynomial-time $4/3$-competitive algorithms for bipartite graphs with arbitrary query costs and for hypergraphs with a single hyperedge and uniform query costs, with matching lower bounds.

Citations (5)

Summary

We haven't generated a summary for this paper yet.