Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting Certified $\ell_\infty$ Robustness with EMA Method and Ensemble Model (2107.00230v1)

Published 1 Jul 2021 in cs.LG

Abstract: The neural network with $1$-Lipschitz property based on $\ell_\infty$-dist neuron has a theoretical guarantee in certified $\ell_\infty$ robustness. However, due to the inherent difficulties in the training of the network, the certified accuracy of previous work is limited. In this paper, we propose two approaches to deal with these difficuties. Aiming at the characteristics of the training process based on $\ell_\infty$-norm neural network, we introduce the EMA method to improve the training process. Considering the randomness of the training algorithm, we propose an ensemble method based on trained base models that have the $1$-Lipschitz property and gain significant improvement in the small parameter network. Moreover, we give the theoretical analysis of the ensemble method based on the $1$-Lipschitz property on the certified robustness, which ensures the effectiveness and stability of the algorithm. Our code is available at https://github.com/Theia-4869/EMA-and-Ensemble-Lip-Networks.

Summary

We haven't generated a summary for this paper yet.