Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Context-Aware Attention-Based Data Augmentation for POI Recommendation (2106.15984v1)

Published 30 Jun 2021 in cs.IR

Abstract: With the rapid growth of location-based social networks (LBSNs), Point-Of-Interest (POI) recommendation has been broadly studied in this decade. Recently, the next POI recommendation, a natural extension of POI recommendation, has attracted much attention. It aims at suggesting the next POI to a user in spatial and temporal context, which is a practical yet challenging task in various applications. Existing approaches mainly model the spatial and temporal information, and memorize historical patterns through user's trajectories for recommendation. However, they suffer from the negative impact of missing and irregular check-in data, which significantly influences the model performance. In this paper, we propose an attention-based sequence-to-sequence generative model, namely POI-Augmentation Seq2Seq (PA-Seq2Seq), to address the sparsity of training set by making check-in records to be evenly-spaced. Specifically, the encoder summarises each check-in sequence and the decoder predicts the possible missing check-ins based on the encoded information. In order to learn time-aware correlation among user history, we employ local attention mechanism to help the decoder focus on a specific range of context information when predicting a certain missing check-in point. Extensive experiments have been conducted on two real-world check-in datasets, Gowalla and Brightkite, for performance and effectiveness evaluation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yang Li (1142 papers)
  2. Yadan Luo (56 papers)
  3. Zheng Zhang (488 papers)
  4. Shazia W. Sadiq (1 paper)
  5. Peng Cui (116 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.