Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Differentiation and Duality in Infinite Dimensions under Polyhedral Convexity (2106.15777v3)

Published 30 Jun 2021 in math.OC

Abstract: This paper addresses the study and applications of polyhedral duality of locally convex topological vector (LCTV) spaces. We first revisit the classical Rockafellar's proper separation theorem for two convex sets one which is polyhedral and then present its LCTV extension with replacing the relative interior by its quasi-relative interior counterpart. Then we apply this result to derive enhanced calculus rules for normals to convex sets, coderivatives of convex set-valued mappings, and subgradients of extended-real-valued functions under certain polyhedrality requirements in LCTV spaces by developing a geometric approach. We also establish in this way new results on conjugate calculus and duality in convex optimization with relaxed qualification conditions in polyhedral settings. Our developments contain significant improvements to a number of existing results obtained by Ng and Song in [31].

Summary

We haven't generated a summary for this paper yet.