Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multimodal Approaches for Indoor Localization for Ambient Assisted Living in Smart Homes (2106.15606v1)

Published 29 Jun 2021 in cs.HC, cs.LG, and eess.SP

Abstract: This work makes multiple scientific contributions to the field of Indoor Localization for Ambient Assisted Living in Smart Homes. First, it presents a Big-Data driven methodology that studies the multimodal components of user interactions and analyzes the data from Bluetooth Low Energy (BLE) beacons and BLE scanners to detect a user's indoor location in a specific activity-based zone during Activities of Daily Living. Second, it introduces a context independent approach that can interpret the accelerometer and gyroscope data from diverse behavioral patterns to detect the zone-based indoor location of a user in any Internet of Things (IoT)-based environment. These two approaches achieved performance accuracies of 81.36% and 81.13%, respectively, when tested on a dataset. Third, it presents a methodology to detect the spatial coordinates of a user's indoor position that outperforms all similar works in this field, as per the associated root mean squared error - one of the performance evaluation metrics in ISO/IEC18305:2016- an international standard for testing Localization and Tracking Systems. Finally, it presents a comprehensive comparative study that includes Random Forest, Artificial Neural Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees, Deep Learning, and Linear Regression, to address the challenge of identifying the optimal machine learning approach for Indoor Localization.

Citations (47)

Summary

We haven't generated a summary for this paper yet.