Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coach2vec: autoencoding the playing style of soccer coaches (2106.15444v1)

Published 29 Jun 2021 in cs.AI

Abstract: Capturing the playing style of professional soccer coaches is a complex, and yet barely explored, task in sports analytics. Nowadays, the availability of digital data describing every relevant spatio-temporal aspect of soccer matches, allows for capturing and analyzing the playing style of players, teams, and coaches in an automatic way. In this paper, we present coach2vec, a workflow to capture the playing style of professional coaches using match event streams and artificial intelligence. Coach2vec extracts ball possessions from each match, clusters them based on their similarity, and reconstructs the typical ball possessions of coaches. Then, it uses an autoencoder, a type of artificial neural network, to obtain a concise representation (encoding) of the playing style of each coach. Our experiments, conducted on soccer-logs describing the last four seasons of the Italian first division, reveal interesting similarities between prominent coaches, paving the road to the simulation of playing styles and the quantitative comparison of professional coaches.

Citations (5)

Summary

We haven't generated a summary for this paper yet.