Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The insider problem in the trinomial model: a discrete-time jump process approach (2106.15208v4)

Published 29 Jun 2021 in math.PR, q-fin.MF, and q-fin.PM

Abstract: In an incomplete market underpinned by the trinomial model, we consider two investors : an ordinary agent whose decisions are driven by public information and an insider who possesses from the beginning a surplus of information encoded through a random variable for which he or she knows the outcome. Through the definition of an auxiliary model based on a marked binomial process, we handle the trinomial model as a volatility one, and use the stochastic analysis and Malliavin calculus toolboxes available in that context. In particular, we connect the information drift, the drift to eliminate in order to preserve the martingale property within an initial enlargement of filtration in terms of the Malliavin derivative. We solve explicitly the agent and the insider expected logarithmic utility maximisation problems and provide a hedging formula for replicable claims. We identify the insider expected additional utility with the Shannon entropy of the extra information, and examine then the existence of arbitrage opportunities for the insider.

Summary

We haven't generated a summary for this paper yet.