Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Early Mobility Recognition for Intensive Care Unit Patients Using Accelerometers (2106.15017v1)

Published 28 Jun 2021 in cs.LG and cs.CY

Abstract: With the development of the Internet of Things(IoT) and Artificial Intelligence(AI) technologies, human activity recognition has enabled various applications, such as smart homes and assisted living. In this paper, we target a new healthcare application of human activity recognition, early mobility recognition for Intensive Care Unit(ICU) patients. Early mobility is essential for ICU patients who suffer from long-time immobilization. Our system includes accelerometer-based data collection from ICU patients and an AI model to recognize patients' early mobility. To improve the model accuracy and stability, we identify features that are insensitive to sensor orientations and propose a segment voting process that leverages a majority voting strategy to recognize each segment's activity. Our results show that our system improves model accuracy from 77.78\% to 81.86\% and reduces the model instability (standard deviation) from 16.69\% to 6.92\%, compared to the same AI model without our feature engineering and segment voting process.

Citations (4)

Summary

We haven't generated a summary for this paper yet.