Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Caching and Computation Offloading in High Altitude Platform Station (HAPS) Assisted Intelligent Transportation Systems (2106.14928v2)

Published 28 Jun 2021 in eess.SY, cs.NI, and cs.SY

Abstract: Edge intelligence, a new paradigm to accelerate AI applications by leveraging computing resources on the network edge, can be used to improve intelligent transportation systems (ITS). However, due to physical limitations and energy-supply constraints, the computing powers of edge equipment are usually limited. High altitude platform station (HAPS) computing can be considered as a promising extension of edge computing. HAPS is deployed in the stratosphere to provide wide coverage and strong computational capabilities. It is suitable to coordinate terrestrial resources and store the fundamental data associated with ITS-based applications. In this work, three computing layers,i.e., vehicles, terrestrial network edges, and HAPS, are integrated to build a computation framework for ITS, where the HAPS data library stores the fundamental data needed for the applications. In addition, the caching technique is introduced for network edges to store some of the fundamental data from the HAPS so that large propagation delays can be reduced. We aim to minimize the delay of the system by optimizing computation offloading and caching decisions as well as bandwidth and computing resource allocations. The simulation results highlight the benefits of HAPS computing for mitigating delays and the significance of caching at network edges.

Citations (48)

Summary

We haven't generated a summary for this paper yet.