Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cheating Detection Pipeline for Online Interviews and Exams (2106.14483v2)

Published 28 Jun 2021 in cs.CV, cs.AI, cs.HC, cs.LG, and cs.MM

Abstract: Remote examination and job interviews have gained popularity and become indispensable because of both pandemics and the advantage of remote working circumstances. Most companies and academic institutions utilize these systems for their recruitment processes and also for online exams. However, one of the critical problems of the remote examination systems is conducting the exams in a reliable environment. In this work, we present a cheating analysis pipeline for online interviews and exams. The system only requires a video of the candidate, which is recorded during the exam. Then cheating detection pipeline is employed to detect another person, electronic device usage, and candidate absence status. The pipeline consists of face detection, face recognition, object detection, and face tracking algorithms. To evaluate the performance of the pipeline we collected a private video dataset. The video dataset includes both cheating activities and clean videos. Ultimately, our pipeline presents an efficient and fast guideline to detect and analyze cheating activities in an online interview and exam video.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Azmi Can Özgen (2 papers)
  2. Mahiye Uluyağmur Öztürk (10 papers)
  3. Umut Bayraktar (1 paper)
Citations (3)

Summary

We haven't generated a summary for this paper yet.