Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The regularity problem for degenerate elliptic operators in weighted spaces (2106.14422v1)

Published 28 Jun 2021 in math.CA and math.AP

Abstract: We study the solvability of the regularity problem for degenerate elliptic operators in the block case for data in weighted spaces. More precisely, let $L_w$ be a degenerate elliptic operator with degeneracy given by a fixed weight $w\in A_2(dx)$ in $\mathbb{R}n$, and consider the associated block second order degenerate elliptic problem in the upper-half space $\mathbb{R}+{n+1}$. We obtain non-tangential bounds for the full gradient of the solution of the block case operator given by the Poisson semigroup in terms of the gradient of the boundary data. All this is done in the spaces $Lp(vdw)$ where $v$ is a Muckenhoupt weight with respect to the underlying natural weighted space $(\mathbb{R}n, wdx)$. We recover earlier results in the non-degenerate case (when $w\equiv 1$, and with or without weight $v$). Our strategy is also different and more direct thanks in particular to recent observations on change of angles in weighted square function estimates and non-tangential maximal functions. Our method gives as a consequence the (unweighted) $L2(dx)$-solvability of the regularity problem for the block operator [ \mathbb{L}\alpha u(x,t) = -|x|{\alpha} \mathrm{div}x \big(|x|{-\alpha }\,A(x) \nabla_x u(x,t)\big)-\partial{t}2 u(x,t) ] for any complex-valued uniformly elliptic matrix $A$ and for all $-\epsilon<\alpha<\frac{2\,n}{n+2}$, where $\epsilon$ depends just on the dimension and the ellipticity constants of $A$.

Summary

We haven't generated a summary for this paper yet.