2000 character limit reached
Universal inference with composite likelihoods (2106.14399v1)
Published 28 Jun 2021 in stat.ME
Abstract: Maximum composite likelihood estimation is a useful alternative to maximum likelihood estimation when data arise from data generating processes (DGPs) that do not admit tractable joint specification. We demonstrate that generic composite likelihoods consisting of marginal and conditional specifications permit the simple construction of composite likelihood ratio-like statistics from which finite-sample valid confidence sets and hypothesis tests can be constructed. These statistics are universal in the sense that they can be constructed from any estimator for the parameter of the underlying DGP. We demonstrate our methodology via a simulation study using a pair of conditionally specified bivariate models.