Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ASK: Adversarial Soft k-Nearest Neighbor Attack and Defense (2106.14300v4)

Published 27 Jun 2021 in cs.LG, cs.AI, and cs.CR

Abstract: K-Nearest Neighbor (kNN)-based deep learning methods have been applied to many applications due to their simplicity and geometric interpretability. However, the robustness of kNN-based classification models has not been thoroughly explored and kNN attack strategies are underdeveloped. In this paper, we propose an Adversarial Soft kNN (ASK) loss to both design more effective kNN attack strategies and to develop better defenses against them. Our ASK loss approach has two advantages. First, ASK loss can better approximate the kNN's probability of classification error than objectives proposed in previous works. Second, the ASK loss is interpretable: it preserves the mutual information between the perturbed input and the in-class-reference data. We use the ASK loss to generate a novel attack method called the ASK-Attack (ASK-Atk), which shows superior attack efficiency and accuracy degradation relative to previous kNN attacks. Based on the ASK-Atk, we then derive an ASK-\underline{Def}ense (ASK-Def) method that optimizes the worst-case training loss induced by ASK-Atk. Experiments on CIFAR-10 (ImageNet) show that (i) ASK-Atk achieves $\geq 13\%$ ($\geq 13\%$) improvement in attack success rate over previous kNN attacks, and (ii) ASK-Def outperforms the conventional adversarial training method by $\geq 6.9\%$ ($\geq 3.5\%$) in terms of robustness improvement.

Citations (5)

Summary

We haven't generated a summary for this paper yet.