Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a novel training algorithm for sequence-to-sequence predictive recurrent networks (2106.14120v1)

Published 27 Jun 2021 in cs.LG

Abstract: Neural networks mapping sequences to sequences (seq2seq) lead to significant progress in machine translation and speech recognition. Their traditional architecture includes two recurrent networks (RNs) followed by a linear predictor. In this manuscript we perform analysis of a corresponding algorithm and show that the parameters of the RNs of the well trained predictive network are not independent of each other. Their dependence can be used to significantly improve the network effectiveness. The traditional seq2seq algorithms require short term memory of a size proportional to the predicted sequence length. This requirement is quite difficult to implement in a neuroscience context. We present a novel memoryless algorithm for seq2seq predictive networks and compare it to the traditional one in the context of time series prediction. We show that the new algorithm is more robust and makes predictions with higher accuracy than the traditional one.

Citations (1)

Summary

We haven't generated a summary for this paper yet.