Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform error bounds of exponential wave integrator methods for the long-time dynamics of the Dirac equation with small potentials (2106.14107v1)

Published 26 Jun 2021 in math.NA and cs.NA

Abstract: Two exponential wave integrator Fourier pseudospectral (EWI-FP) methods are presented and analyzed for the long-time dynamics of the Dirac equation with small potentials characterized by $\varepsilon \in (0, 1]$ a dimensionless parameter. Based on the (symmetric) exponential wave integrator for temporal derivatives in phase space followed by applying the Fourier pseudospectral discretization for spatial derivatives, the EWI-FP methods are explicit and of spectral accuracy in space and second-order accuracy in time for any fixed $\varepsilon = \varepsilon_0$. Uniform error bounds are rigorously carried out at $O(h{m_0}+\tau2)$ up to the time at $O(1/\varepsilon)$ with the mesh size $h$, time step $\tau$ and $m_0$ an integer depending on the regularity of the solution. Extensive numerical results are reported to confirm our error bounds and comparisons of two methods are shown. Finally, dynamics of the Dirac equation in 2D are presented to validate the numerical schemes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yue Feng (55 papers)
  2. Jia Yin (28 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.