Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge-Grounded Self-Rationalization via Extractive and Natural Language Explanations (2106.13876v4)

Published 25 Jun 2021 in cs.CL, cs.AI, and cs.LG

Abstract: Models that generate extractive rationales (i.e., subsets of features) or natural language explanations (NLEs) for their predictions are important for explainable AI. While an extractive rationale provides a quick view of the features most responsible for a prediction, an NLE allows for a comprehensive description of the decision-making process behind a prediction. However, current models that generate the best extractive rationales or NLEs often fall behind the state-of-the-art (SOTA) in terms of task performance. In this work, we bridge this gap by introducing RExC, a self-rationalizing framework that grounds its predictions and two complementary types of explanations (NLEs and extractive rationales) in background knowledge. Our framework improves over previous methods by: (i) reaching SOTA task performance while also providing explanations, (ii) providing two types of explanations, while existing models usually provide only one type, and (iii) beating by a large margin the previous SOTA in terms of quality of both types of explanations. Furthermore, a perturbation analysis in RExC shows a high degree of association between explanations and predictions, a necessary property of faithful explanations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Bodhisattwa Prasad Majumder (39 papers)
  2. Oana-Maria Camburu (29 papers)
  3. Thomas Lukasiewicz (125 papers)
  4. Julian McAuley (238 papers)
Citations (31)