Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-scale Poisson process approaches for differential expression analysis of high-throughput sequencing data (2106.13634v1)

Published 25 Jun 2021 in stat.ME and q-bio.QM

Abstract: Estimating and testing for differences in molecular phenotypes (e.g. gene expression, chromatin accessibility, transcription factor binding) across conditions is an important part of understanding the molecular basis of gene regulation. These phenotypes are commonly measured using high-throughput sequencing assays (e.g., RNA-seq, ATAC-seq, ChIP-seq), which provide high-resolution count data that reflect how the phenotypes vary along the genome. Multiple methods have been proposed to help exploit these high-resolution measurements for differential expression analysis. However, they ignore the count nature of the data, instead using normal approximations that work well only for data with large sample sizes or high counts. Here we develop count-based methods to address this problem. We model the data for each sample using an inhomogeneous Poisson process with spatially structured underlying intensity function, and then, building on multi-scale models for the Poisson process, estimate and test for differences in the underlying intensity function across samples (or groups of samples). Using both simulation and real ATAC-seq data we show that our method outperforms previous normal-based methods, especially in situations with small sample sizes or low counts.

Summary

We haven't generated a summary for this paper yet.