Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Neural Networks: Essentials (2106.13594v1)

Published 22 Jun 2021 in cs.LG and cs.AI

Abstract: Bayesian neural networks utilize probabilistic layers that capture uncertainty over weights and activations, and are trained using Bayesian inference. Since these probabilistic layers are designed to be drop-in replacement of their deterministic counter parts, Bayesian neural networks provide a direct and natural way to extend conventional deep neural networks to support probabilistic deep learning. However, it is nontrivial to understand, design and train Bayesian neural networks due to their complexities. We discuss the essentials of Bayesian neural networks including duality (deep neural networks, probabilistic models), approximate Bayesian inference, Bayesian priors, Bayesian posteriors, and deep variational learning. We use TensorFlow Probability APIs and code examples for illustration. The main problem with Bayesian neural networks is that the architecture of deep neural networks makes it quite redundant, and costly, to account for uncertainty for a large number of successive layers. Hybrid Bayesian neural networks, which use few probabilistic layers judicially positioned in the networks, provide a practical solution.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Daniel T. Chang (25 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.