Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Applications of large deviation theory in geophysical fluid dynamics and climate science (2106.13546v1)

Published 25 Jun 2021 in cond-mat.stat-mech, physics.ao-ph, physics.comp-ph, physics.data-an, and physics.flu-dyn

Abstract: The climate system is a complex, chaotic system with many degrees of freedom and variability on a vast range of temporal and spatial scales. Attaining a deeper level of understanding of its dynamical processes is a scientific challenge of great urgency, especially given the ongoing climate change and the evolving climate crisis. In statistical physics, complex, many-particle systems are studied successfully using the mathematical framework of Large Deviation Theory (LDT). A great potential exists for applying LDT to problems relevant for geophysical fluid dynamics and climate science. In particular, LDT allows for understanding the fundamental properties of persistent deviations of climatic fields from the long-term averages and for associating them to low-frequency, large scale patterns of climatic variability. Additionally, LDT can be used in conjunction with so-called rare events algorithms to explore rarely visited regions of the phase space and thus to study special dynamical configurations of the climate. These applications are of key importance to improve our understanding of high-impact weather and climate events. Furthermore, LDT provides powerful tools for evaluating the probability of noise-induced transitions between competing metastable states of the climate system or of its components. This in turn essential for improving our understanding of the global stability properties of the climate system and of its predictability of the second kind in the sense of Lorenz. The goal of this review is manifold. First, we want to provide an introduction to the derivation of large deviation laws in the context of stochastic processes. We then relate such results to the existing literature showing the current status of applications of LDT in climate science and geophysical fluid dynamics. Finally, we propose some possible lines of future investigations.

Summary

We haven't generated a summary for this paper yet.