Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-based Design of Inferential Sensors for Petrochemical Industry (2106.13503v1)

Published 25 Jun 2021 in cs.LG and eess.SP

Abstract: Inferential (or soft) sensors are used in industry to infer the values of imprecisely and rarely measured (or completely unmeasured) variables from variables measured online (e.g., pressures, temperatures). The main challenge, akin to classical model overfitting, in designing an effective inferential sensor is the selection of a correct structure of the sensor. The sensor structure is represented by the number of inputs to the sensor, which correspond to the variables measured online and their (simple) combinations. This work is focused on the design of inferential sensors for product composition of an industrial distillation column in two oil refinery units, a Fluid Catalytic Cracking unit and a Vacuum Gasoil Hydrogenation unit. As the first design step, we use several well-known data pre-treatment (gross error detection) methods and compare the ability of these approaches to indicate systematic errors and outliers in the available industrial data. We then study effectiveness of various methods for design of the inferential sensors taking into account the complexity and accuracy of the resulting model. The effectiveness analysis indicates that the improvements achieved over the current inferential sensors are up to 19 %.

Citations (6)

Summary

We haven't generated a summary for this paper yet.