Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum-tailored machine-learning characterization of a superconducting qubit (2106.13126v1)

Published 24 Jun 2021 in quant-ph

Abstract: Machine learning (ML) is a promising approach for performing challenging quantum-information tasks such as device characterization, calibration and control. ML models can train directly on the data produced by a quantum device while remaining agnostic to the quantum nature of the learning task. However, these generic models lack physical interpretability and usually require large datasets in order to learn accurately. Here we incorporate features of quantum mechanics in the design of our ML approach to characterize the dynamics of a quantum device and learn device parameters. This physics-inspired approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data obtained from continuous weak measurement of a driven superconducting transmon qubit. This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task, thus laying the groundwork for more scalable characterization techniques.

Citations (21)

Summary

We haven't generated a summary for this paper yet.