Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Advancing biological super-resolution microscopy through deep learning: a brief review (2106.13064v1)

Published 24 Jun 2021 in physics.bio-ph, cs.CV, and eess.IV

Abstract: Super-resolution microscopy overcomes the diffraction limit of conventional light microscopy in spatial resolution. By providing novel spatial or spatio-temporal information on biological processes at nanometer resolution with molecular specificity, it plays an increasingly important role in life sciences. However, its technical limitations require trade-offs to balance its spatial resolution, temporal resolution, and light exposure of samples. Recently, deep learning has achieved breakthrough performance in many image processing and computer vision tasks. It has also shown great promise in pushing the performance envelope of super-resolution microscopy. In this brief Review, we survey recent advances in using deep learning to enhance performance of super-resolution microscopy. We focus primarily on how deep learning ad-vances reconstruction of super-resolution images. Related key technical challenges are discussed. Despite the challenges, deep learning is set to play an indispensable and transformative role in the development of super-resolution microscopy. We conclude with an outlook on how deep learning could shape the future of this new generation of light microscopy technology.

Citations (12)

Summary

We haven't generated a summary for this paper yet.