Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularisation for PCA- and SVD-type matrix factorisations (2106.12955v1)

Published 24 Jun 2021 in cs.CV and cs.CE

Abstract: Singular Value Decomposition (SVD) and its close relative, Principal Component Analysis (PCA), are well-known linear matrix decomposition techniques that are widely used in applications such as dimension reduction and clustering. However, an important limitation of SVD/PCA is its sensitivity to noise in the input data. In this paper, we take another look at the problem of regularisation and show that different formulations of the minimisation problem lead to qualitatively different solutions.

Summary

We haven't generated a summary for this paper yet.