Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Slack matrices, $k$-products, and $2$-level polytopes (2106.12829v1)

Published 24 Jun 2021 in cs.DM, math.CO, and math.OC

Abstract: In this paper, we study algorithmic questions concerning products of matrices and their consequences for recognition algorithms for polyhedra. The 1-product of matrices $S_1$, $S_2$ is a matrix whose columns are the concatenation of each column of $S_1$ with each column of $S_2$. The $k$-product generalizes the $1$-product, by taking as input two matrices $S_1, S_2$ together with $k-1$ special rows of each of those matrices, and outputting a certain composition of $S_1,S_2$. Our study is motivated by a close link between the 1-product of matrices and the Cartesian product of polytopes, and more generally between the $k$-product of matrices and the glued product of polytopes. These connections rely on the concept of slack matrix, which gives an algebraic representation of classes of affinely equivalent polytopes. The slack matrix recognition problem is the problem of determining whether a given matrix is a slack matrix. This is an intriguing problem whose complexity is unknown. Our algorithm reduces the problem to instances which cannot be expressed as $k$-products of smaller matrices. In the second part of the paper, we give a combinatorial interpretation of $k$-products for two well-known classes of polytopes: 2-level matroid base polytopes and stable set polytopes of perfect graphs. We also show that the slack matrix recognition problem is polynomial-time solvable for such polytopes. Those two classes are special cases of $2$-level polytopes, for which we conjecture that the slack matrix recognition problem is polynomial-time solvable.

Citations (1)

Summary

We haven't generated a summary for this paper yet.