Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-End Lexically Constrained Machine Translation for Morphologically Rich Languages (2106.12398v2)

Published 23 Jun 2021 in cs.CL

Abstract: Lexically constrained machine translation allows the user to manipulate the output sentence by enforcing the presence or absence of certain words and phrases. Although current approaches can enforce terms to appear in the translation, they often struggle to make the constraint word form agree with the rest of the generated output. Our manual analysis shows that 46% of the errors in the output of a baseline constrained model for English to Czech translation are related to agreement. We investigate mechanisms to allow neural machine translation to infer the correct word inflection given lemmatized constraints. In particular, we focus on methods based on training the model with constraints provided as part of the input sequence. Our experiments on the English-Czech language pair show that this approach improves the translation of constrained terms in both automatic and manual evaluation by reducing errors in agreement. Our approach thus eliminates inflection errors, without introducing new errors or decreasing the overall quality of the translation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Josef Jon (12 papers)
  2. João Paulo Aires (6 papers)
  3. Dušan Variš (10 papers)
  4. Ondřej Bojar (91 papers)
Citations (13)