Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Should You Go Deeper? Optimizing Convolutional Neural Network Architectures without Training by Receptive Field Analysis (2106.12307v2)

Published 23 Jun 2021 in cs.LG, cs.AI, cs.NE, and stat.ML

Abstract: When optimizing convolutional neural networks (CNN) for a specific image-based task, specialists commonly overshoot the number of convolutional layers in their designs. By implication, these CNNs are unnecessarily resource intensive to train and deploy, with diminishing beneficial effects on the predictive performance. The features a convolutional layer can process are strictly limited by its receptive field. By layer-wise analyzing the size of the receptive fields, we can reliably predict sequences of layers that will not contribute qualitatively to the test accuracy in the given CNN architecture. Based on this analysis, we propose design strategies based on a so-called border layer. This layer allows to identify unproductive convolutional layers and hence to resolve these inefficiencies, optimize the explainability and the computational performance of CNNs. Since neither the strategies nor the analysis requires training of the actual model, these insights allow for a very efficient design process of CNN architectures, which might be automated in the future.

Citations (14)

Summary

We haven't generated a summary for this paper yet.