Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted Random Sampling on GPUs (2106.12270v2)

Published 23 Jun 2021 in cs.DS

Abstract: An alias table is a data structure that allows for efficiently drawing weighted random samples in constant time and can be constructed in linear time. The PSA algorithm by H\"ubschle-Schneider and Sanders is able to construct alias tables in parallel on the CPU. In this report, we transfer the PSA algorithm to the GPU. Our construction algorithm achieves a speedup of 17 on a consumer GPU in comparison to the PSA method on a 16-core high-end desktop CPU. For sampling, we achieve an up to 24 times higher throughput. Both operations also require several times less energy than on the CPU. Adaptations helping to achieve this include changing memory access patterns to do coalesced access. Where this is not possible, we first copy data to the faster shared memory using coalesced access. We also enhance a generalization of binary search enabling to search for a range of items in parallel. Besides naive sampling, we also give improved batched sampling algorithms.

Summary

We haven't generated a summary for this paper yet.