Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep neural network Based Low-latency Speech Separation with Asymmetric analysis-Synthesis Window Pair (2106.11794v1)

Published 22 Jun 2021 in eess.AS and cs.SD

Abstract: Time-frequency masking or spectrum prediction computed via short symmetric windows are commonly used in low-latency deep neural network (DNN) based source separation. In this paper, we propose the usage of an asymmetric analysis-synthesis window pair which allows for training with targets with better frequency resolution, while retaining the low-latency during inference suitable for real-time speech enhancement or assisted hearing applications. In order to assess our approach across various model types and datasets, we evaluate it with both speaker-independent deep clustering (DC) model and a speaker-dependent mask inference (MI) model. We report an improvement in separation performance of up to 1.5 dB in terms of source-to-distortion ratio (SDR) while maintaining an algorithmic latency of 8 ms.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com