Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NCIS: Neural Contextual Iterative Smoothing for Purifying Adversarial Perturbations (2106.11644v2)

Published 22 Jun 2021 in cs.CV and cs.LG

Abstract: We propose a novel and effective purification based adversarial defense method against pre-processor blind white- and black-box attacks. Our method is computationally efficient and trained only with self-supervised learning on general images, without requiring any adversarial training or retraining of the classification model. We first show an empirical analysis on the adversarial noise, defined to be the residual between an original image and its adversarial example, has almost zero mean, symmetric distribution. Based on this observation, we propose a very simple iterative Gaussian Smoothing (GS) which can effectively smooth out adversarial noise and achieve substantially high robust accuracy. To further improve it, we propose Neural Contextual Iterative Smoothing (NCIS), which trains a blind-spot network (BSN) in a self-supervised manner to reconstruct the discriminative features of the original image that is also smoothed out by GS. From our extensive experiments on the large-scale ImageNet using four classification models, we show that our method achieves both competitive standard accuracy and state-of-the-art robust accuracy against most strong purifier-blind white- and black-box attacks. Also, we propose a new benchmark for evaluating a purification method based on commercial image classification APIs, such as AWS, Azure, Clarifai and Google. We generate adversarial examples by ensemble transfer-based black-box attack, which can induce complete misclassification of APIs, and demonstrate that our method can be used to increase adversarial robustness of APIs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Sungmin Cha (26 papers)
  2. Naeun Ko (3 papers)
  3. Taesup Moon (48 papers)
  4. YoungJoon Yoo (31 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.